Full scale tests on seismic retrofitted existing structures with FRC

G. Plizzari
University of Brescia, Italy
giovanni.plizzari@unibs.it
Strengthening of a bridge pier

Case study: existing bridge

Seismic actions

Seismic action

H = 22.40 m \(V_c = 210 \text{ m}^3 \) \(V_r = 44 \text{ m}^3 \)
HPFRC

High mechanical performance

Durability

- REPAIRING
- STRENGTHENING
- SEISMIC RETROFITTING

Toughness

Fire resistance

Energy dissipation

Full scale tests on seismic retrofitted structures with FRC
HPFRC properties

<table>
<thead>
<tr>
<th>Property (specimen dimension)</th>
<th>Standard</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass density</td>
<td>UNI EN 12350</td>
<td>2510±2580 kg/m³</td>
</tr>
<tr>
<td>Compressive strength at 1 day (100X100mm)</td>
<td></td>
<td>67 MPa §</td>
</tr>
<tr>
<td>Compressive strength at 7 days (100X100mm)</td>
<td>UNI EN 12390 - 3</td>
<td>111 MPa §</td>
</tr>
<tr>
<td>Compressive strength at 28 days (100X100mm)</td>
<td></td>
<td>131 MPa §</td>
</tr>
<tr>
<td>Compressive strength at 56 days (100X100mm)</td>
<td></td>
<td>>130 MPa</td>
</tr>
<tr>
<td>Cylindrical/Cubical Compressive strength ratio</td>
<td>-</td>
<td>≈ 1</td>
</tr>
<tr>
<td>Flexural strength at 28 days (10X10x400mm)</td>
<td>UNI EN 12390 - 5</td>
<td>18.4 MPa</td>
</tr>
</tbody>
</table>

Stainless steel fibers

Full scale tests on seismic retrofitted structures with FRC
University of Sharjah, April 23rd, 2018
Bridge retrofitting

M-N resistance increase

HPFRC Jacketing

Jaceting thickness: 120 mm

Unreinforced vs. Layer 120 mm:
- $+78\%$ increase
- $+55\%$ increase
- $+74\%$ increase
Experimental set-up

Specimen scaled 1:4

Full scale tests on seismic retrofitted structures with FRC

University of Sharjah, April 23rd, 2018
Concrete pouring

Full scale tests on seismic retrofitted structures with FRC

University of Sharjah, April 23rd, 2018
Original bridge pier

April 23, 2018

Full scale tests on seismic retrofitted structures with FRC

University of Brescia

8
HPFRC jacketing

Full scale tests on seismic retrofitted structures with FRC University of Sharjah, April 23rd, 2018
Retrofitted pier

April 23, 2018

University of Brescia

Full scale tests on seismic retrofitted structures with FRC

University of Sharjah, April 23rd, 2018
Pre and post retrofitting behavior

Reinforced

Reference (theoretical)

Increment of load bearing capacity (+74%)

Full scale tests on seismic retrofitted structures with FRC

University of Sharjah, April 23rd, 2018
Masonry buildings reinforced with FRC mortar

Ground acceleration

Full scale tests on seismic retrofitted structures with FRC

University of Sharjah, April 23rd, 2018
Strengthening with Fiber Reinforced Mortar

Ground acceleration

Full scale tests on seismic retrofitted structures with FRC University of Sharjah, April 23rd, 2018
To use thin overlays made of an innovative steel fiber reinforced mortar for:

- improving the out-of-plane resistance of masonry walls (future step of the research);
- enhancing the in-plane shear capacity of the masonry walls.

Experimental tests on walls: aim of the research

Section view of a typical 2-storey URM building

Thin SFRM overlays

Lateral (seismic) load

✓ Floor loads

✓ Ground acceleration

Full scale tests on seismic retrofitted structures with FRC

University of Sharjah, April 23rd, 2018
Material properties: solid clay brick masonry

Mortar for masonry joints (M2.5 – according Eurocode 6)
- Flexural strength (according EN 1015-11, 2007) \(1.5 \text{MPa} \)
- Compressive strength (according EN 1015-11, 2007) \(4.2 \text{MPa} \)

Solid clay bricks
- (size: 23x11x5cm³)
- Flexural strength \(1.72 \text{MPa} \)
- Compressive strength (EN 772-1, 2002) \(12.4 \text{MPa} \)
- Tensile strength \(0.9 \text{MPa} \)

Composite solid clay MASONRY (Masonry specimens : 71x48x23cm³)
- Elastic modulus (EN 1052-1, 2001) \(E_m = 4200 \text{MPa} \)
- Compressive strength (EN 1052-1, 2001)

Different bed joint orientations (0°, 22.5°, 45°, 90°)

- \(f_{m,0°} = 6.1 \text{MPa} \)
- \(f_{m,90°} = 5.7 \text{MPa} \)
- \(f_{m,22.5°} = 2.6 \text{MPa} \)
- \(f_{m,45°} = 4.0 \text{MPa} \)
Volume fraction $V_f = 0.82\%$

<table>
<thead>
<tr>
<th>LUNGHEZZA L_f [mm]</th>
<th>DIAMETRO Φ_f [mm]</th>
<th>RAPPORTO D'ASPETTO L_f/Φ_f [-]</th>
<th>RESISTENZA A TRAZIONE [MPa]</th>
<th>FORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.40</td>
<td>38</td>
<td>> 2400</td>
<td>Uncinate</td>
</tr>
</tbody>
</table>

Resistenza a trazione per flessione media (a) $(EN\ 1015-11,2007)$ → 6MPa

Resistenza a compressione media (b) $(EN\ 1015-11,2007)$ → 48.3MPa

Valore medio modulo elastico $(EN\ 12390-1)$ → 33600MPa

Resistenza a trazione $(EC2)$ → 3.85MPa
Test instrumentation

DRIFT (%) = \frac{\text{LATERAL DISPLACEMENT}}{\text{WALL HEIGHT}}

Lateral displacement = difference between F1 and B

Wall height = 2070 mm
Experimental set-up

Full scale tests on seismic retrofitted structures with FRC

University of Sharjah, April 23rd, 2018
Experimental results

Load-displacement envelopes comparison

<table>
<thead>
<tr>
<th>Specimen type and loading direction</th>
<th>Lateral load [kN]</th>
<th>First cracking load [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW1</td>
<td>+ 166</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>- 147</td>
<td>60</td>
</tr>
<tr>
<td>MW3 ST-SP</td>
<td>+ 221 >33%</td>
<td>130 >100%</td>
</tr>
<tr>
<td></td>
<td>- 215 >46%</td>
<td>150 >150%</td>
</tr>
<tr>
<td>MW4 ST-LP</td>
<td>+ 232 >39%</td>
<td>211 >225%</td>
</tr>
<tr>
<td></td>
<td>- 219 >49%</td>
<td>202 >237%</td>
</tr>
<tr>
<td>MW5 STK-LP</td>
<td>+ 222 >34%</td>
<td>185 >185%</td>
</tr>
<tr>
<td></td>
<td>- 212 >44%</td>
<td>212 >253%</td>
</tr>
<tr>
<td>MW6 ST-SP</td>
<td>+ 248 >49%</td>
<td>211 >225%</td>
</tr>
<tr>
<td></td>
<td>- 221 >50%</td>
<td>193 >222%</td>
</tr>
</tbody>
</table>

Central image:

- **Increment of the first cracking load with respect to MW1**
- **Lateral strength increment with respect to MW6**

Graphical data:

- **Displacement [mm]**
- **Load [kN]**

Full scale tests on seismic retrofitted structures with FRC

University of Sharjah, April 23rd, 2018
Simulation of a full-scale masonry building: shaking table test results

Base shear vs. top lateral displacement

Envelope of the cyclic curve

Damage pattern at failure
Numerical modelling of full-scale building

Building 2

Shell elements
MASONRY WALL + MORTAR (CQ40L)

STONE MASONRY & BIOGLOB® MORTAR

Smeared Crack Model
(Total Strain Rotating Crack Model)
Curved Shell Layered Element

F_{V1} = 4.49 N/mm
F_{V2} = 2.39 N/mm
F_{V3} = 20.55 N/mm
F_{H1} = 1582.35 N
F_{H2} = 3183.5 N
F_{H3} = 468.3 N

Traction
Compression

Nonlinear tension softening
Parabolic compression curve
Numerical simulation of the masonry building without coating

Load-Displacement Curves

- Experimental – URM
- Numerical – URM

Positive direction

Negative direction

Numerical and experimental damage patterns comparison

Full scale tests on seismic retrofitted structures with FRC

University of Sharjah, April 23rd, 2018
Test on a full scale masonry building

SFRM coating on the external surface

STRUCTURE
- Hollow clay brick masonry
- Wooden floors and roof
- Seismic floor diaphragms

LOADS
- Quasi-static reverse cyclic test

REINFORCEMENT
- 25 mm thick
- Anchored in foundations
Building characteristics

TYPE OF BRICKS

Poroton P600:
- thickness 200mm
- holes 60%

HORIZONTAL LOADS CONDITION

Proportional to floor mass

OPENINGS CONFIGURATION

1 door + 8 windows

REPRESENTATION OF AN EXISTING BUILDING
Preliminary designs

STRONG WALL

- $H = 12$ m
- $F_h = 1500$ kN

RC FOUNDATION

- $M_{max} = 18000$ kNm

Full scale tests on seismic retrofitted structures with FRC

University of Sharjah, April 23rd, 2018
Test setup and protocol

Full scale tests on seismic retrofitted structures with FRC
University of Sharjah, April 23rd, 2018 26/80
Experimental results

CYCLIC RESPONSE OF UNSTRENGTHENED BUILDING

<table>
<thead>
<tr>
<th></th>
<th>Positive loading direction</th>
<th>Negative loading direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_S [kN/mm]</td>
<td>134</td>
<td>128</td>
</tr>
<tr>
<td>$V_{cracking}$ [kN]</td>
<td>120</td>
<td>128</td>
</tr>
<tr>
<td>V_{peak} [kN]</td>
<td>180</td>
<td>179</td>
</tr>
<tr>
<td>δ_{peak} [kN]</td>
<td>2.4</td>
<td>3.4</td>
</tr>
</tbody>
</table>

FAILURE MODE:

- In-plane longitudinal walls response
- Diagonal shear failure of masonry piers at ground floor

Full scale tests on seismic retrofitted structures with FRC

University of Sharjah, April 23rd, 2018
Experimental vs numerical results

LATERAL LOAD – DISPLACEMENT ENVELOPE

Numerical initial stiffness closed to the experimental one
First cracking and maximum numerical loads slightly underestimated

<table>
<thead>
<tr>
<th>Load</th>
<th>Experimental</th>
<th>Numerical</th>
</tr>
</thead>
<tbody>
<tr>
<td>K^+_{S} [kN/mm]</td>
<td>134</td>
<td>129 (-4%)</td>
</tr>
<tr>
<td>K^-_{S} [kN/mm]</td>
<td>128</td>
<td>153 (+20%)</td>
</tr>
<tr>
<td>$V^+_{cracking}$ [kN]</td>
<td>120</td>
<td>114 (-5%)</td>
</tr>
<tr>
<td>$V^-_{cracking}$ [kN]</td>
<td>128</td>
<td>112 (-12%)</td>
</tr>
<tr>
<td>V^+_{peak} [kN]</td>
<td>180</td>
<td>147 (-18%)</td>
</tr>
<tr>
<td>V^-_{peak} [kN]</td>
<td>179</td>
<td>145 (-19%)</td>
</tr>
</tbody>
</table>

Full scale tests on seismic retrofitted structures with FRC University of Sharjah, April 23rd, 2018 28/80
Experimental vs numerical results

CRACK PATTERNS AT THE END OF EXPERIMENTAL TEST (inside view of east façade at ground floor):

FAILURE MODE:
- Diagonal shear failure of central pier (Pier 2)
- Rocking mechanism of the external piers (Pier 1 and Pier 3)
- Incipient diagonal shear crack of Pier 1

TENSILE CRACKING STRAIN AT THE COLLAPSE OF NUMERICAL ANALYSIS (outside view of east façade):
Numerical simulation

Unstrengthened building

- Shear crack in masonry walls

Strengthened building

- No more shear cracks
- Crack from the window corners

Full scale tests on seismic retrofitted structures with FRC

University of Sharjah, April 23rd, 2018
Numerical simulation of the masonry building strengthened with 1 layer of SFRM

Full scale tests on seismic retrofitted structures with FRC

University of Sharjah, April 23rd, 2018
Results of the finite element analyses

Damage pattern after the experimental test

Numerical crack pattern of the unstrengthened specimen

Numerical crack pattern of the specimen strengthened with 1 layer of SFRM

Full scale tests on seismic retrofitted structures with FRC

University of Sharjah, April 23rd, 2018
Thank you for your kind attention!

University of Brescia, Italy